If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-28x-84=0
a = 2; b = -28; c = -84;
Δ = b2-4ac
Δ = -282-4·2·(-84)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{91}}{2*2}=\frac{28-4\sqrt{91}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{91}}{2*2}=\frac{28+4\sqrt{91}}{4} $
| X-1=-x-0.4 | | -22x-12=10 | | 3/7m=51 | | 8(9f+2)=-26 | | 2/1=c/9 | | 32-5x=4(-6x-7)+3 | | 2.7x+5=1.5 | | 6x=-160 | | −12m−7=53 | | -8x-7=-6x+3 | | 6x(4+2)+100=136 | | 9x+5/4x+7= | | 112=58+6b | | 5.1x-11.2=24.5 | | 6x-23=3x+13 | | –1=z4 | | 4j2–20j+9=0 | | -160=6x | | n/4=695 | | 40=2m | | 4x10=-3x+11 | | 2(x-1)-12=-17 | | 3/4x+2=1/2x=8 | | 4×1.20+a×1.20=7.20= | | 4x-7x+14=26 | | -7x+-2=-7+3 | | 8n-7n=35 | | x/2=542 | | 85x^2+30-4x^2-354=0 | | 2y^2+2=y+5 | | 3x-(4+2x)=-x+2 | | 3p-6=p-8-2 |